The realization space is [1 1 0 1 0 1 1 0 x1 - 2 x1^2 - 4*x1 + 4 x1 - 2] [0 1 1 x1 - 1 0 0 1 x1 - 2 x1^2 - 3*x1 + 2 x1^3 - 4*x1^2 + 5*x1 - 2 x1^2 - 2*x1] [0 0 0 0 1 1 1 -x1 + 1 -x1^2 + 3*x1 - 3 -x1^3 + 4*x1^2 - 6*x1 + 3 -x1^2 + 3*x1 - 3] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^9 + 14*x1^8 - 86*x1^7 + 303*x1^6 - 670*x1^5 + 952*x1^4 - 848*x1^3 + 432*x1^2 - 96*x1) avoiding the zero loci of the polynomials RingElem[x1^2 - 3*x1 + 3, x1 - 1, x1 - 2, x1^3 - 4*x1^2 + 5*x1 - 1, 2*x1 - 3, x1, 2*x1^2 - 6*x1 + 5, x1^3 - 3*x1^2 + 2*x1 + 1]